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A high-order extension of Godunov’s method is developed for the equations of steady 
supersonic flow. Sample calculations show that the method resolves smooth flow accurately 
and represents strong shock waves with very little diffusion and no post-shock oscillation. 
C) 1985 Academic Press. Inc. 

The equations for inviscid steady supersonic flow are frequently applied to the 
analysis of both internal and external aerodynamic flowtields. These problems are 
three dimensional in nature and may exhibit complex shock systems and slip sur- 
face structures. The external flowfield about a finned missile contains the bow shock 
generated by the missile body, shocks produced by fin leading edges, and contact 
discontinuities formed at the tin trailing edges. These structures can all interact with 
one another, and the tins themselves may protrude through the bow shock. Internal 
inlet flowfields of equal complexity also occur. Here the shocks and contact discon- 
tinuities may result from the fuel injection apparatus as well as the inlet geometry 
itself. - 

Numerical solution of such aerodynamic flowfields requires an algorithm which 
accurately resolves, with minimum diffusion, the development and subsequent 
interaction of strong shock waves or slip surfaces. Two different strategies are 
available for treating inviscid flowfields featuring discontinuities. The most accurate 
results are obtained using shock fitting. Here special procedures are applied at each 
shock or slip surface ensuring that the resulting solution satisfies the appropriate 
jump conditions. This approach works well for two-dimensional -flows (see [ 11) but 
is difficult to extend to three dimensions. An algorithm can be readily designed to 
treat a specific three-dimensional problem with simple discontinuity structure. 
However, it has not proved feasible to construct a general method applicable to 
flowtields containing an arbitrary number of discontinuities. A second strategy for 
dealing with discontinuities is to capture them by differencing the equations in con- 
servation form. This approach does not require special treatment of shocks or slip 
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surfaces and is applicable to general three-dimensional flowtields. Unfortunately, 
this method smears out discontinuities over a number of mesh points, particularly 
in the case of strong shocks where extensive artificial viscosity must be added when 
using standard schemes. Experimentation is often required to determine the 
appropriate level of artificial viscosity. References [2-5) are examples of existing 
techniques for dealing with three-dimensional steady supersonic flowfields. Methods 
dependent solely on shock fitting are limited to problems with simple shock 
systems. Most other methods lit only certain strong shocks and capture the rest. 

This paper presents a robust scheme in conservation form for treating steady 
supersonic flow which captures discontinuities with a minimum of diffusion and 
without the need to explicitly add artificial viscosity. This is achieved using an 
extension of Godunov’s method which is higher-order accurate in regions of 
smooth flow. The resulting algorithm is based closely on elements of the scheme 
presented in [6] and [7] for unsteady gas dynamics. It can be considered to be an 
upwind scheme where upwinding is implemented via direct application of the 
characteristic equations and the Riemann problem to compute fluxes. Background 
on the development of this type of scheme for unsteady gas dynamics is provided in 
Refs. [6-lo]. High-order Godunov methods are explicitly constructed to be 
applicable to arbitrary systems of hyperbolic conservation laws as long as the 
associated characteristic equations and the Riemann problem can be solved com- 
pletely and efftciently. 

The results presented in this paper are restricted to two-dimensional flows. 
However, there appear to be no major problems associated with extending this 
method to three dimensions. In the case of unsteady gas dynamics, this has been 
accomplished in Refs. [6-g], using Strang splitting with little or no loss in the 
sharpness of the resolved shocks and slip surfaces. A similar procedure can be 
applied in the case of steady supersonic flow, although other strategies are also 
possible. 

In Section 1, the equations of motion are introduced, and the characteristic 
analysis for these equations is carried out. In Section 2, the Riemann problem and 
its numerical solution is presented. In both of these sections, the extensive analogies 
between unsteady gas dynamics and steady supersonic gas dynamics will be 
apparent. In Section 3, our high-order Godunov scheme will be constructed for 
initial-value problems, while boundary conditions are treated in Section 4. Finally, 
the numerical results for a number of model problems are presented in Section 5. 

1. EQUATIONS OF MOTION AND CHARACTERISTIC ANALYSIS 

The conservation equations for steady supersonic flow, written in Cartesian coor- 
dinates. are: 

F, + G,, = 0, (1) 
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where 

PV 
G= PUV 

[ I pv2+p ’ (2) 

PVH 

and x is the “marching” direction, 4’ is the crossflow direction, u is the x-velocity 
component, v is the y-velocity component, p is the density, p is the pressure, and H 
is the stagnation enthalpy. For many flowfields of interest H is constant and the 
energy equation reduces to the constraint 

H=h(p,p)+fq2=H,,, (3) 

where q2 = u2 + D 2, h is the specific enthalpy, and Ho is the constant value of H. Use 
of (3) in place of the energy equation introduces little loss of generality and the 
method discussed in this paper can be easily extended to cover the contingency of 
non-constant Ho. This system of equations is closed using the polytropic gas 
equation of state: 

h(p, p)=YP 
(Y-l)P’ 

(4) 

where 7 > 1 is the ratio of specific heats. However, using the technique introduced in 
[8, 91 for unsteady gas dynamics, an arbitrary equation of state can be treated as 
well. 

The system (1) may be expressed in quasilinear form as 

Q, + AQ, = 0, 

where 

A=[g]-'[g] 

(5) 

and Q is an arbitrary set of characteristic coordinates such that det[A] # 0. We 
shall consider two choices for Qi 

-a2 -VIP 

Q'= (u, 0, P): A’=(u2-a2)-’ i(u2-a2) !LI$ 1 (6a) 
pus’ UV 
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and 

Q” = (p, 6, s)‘, A”=(U2-a2)-1 

where 

MU pa2q2 0 

q2-a2 

p42 

UV 0 

0 0 i(u2-a2) 

S=lv-~W 
(Y-1) ’ 

6 = tan - ‘(v/u). 

I , (6b) 

(7) 

Here S is a measure of the specific entropy and 6 is the streamline direction. The 
eigenvalues of A are: 

II, = v/u - tan 6. W) 

Here, the Mach angle, p, is given by 

p=tan-‘((M’- l))“‘), (9) 

where the Mach number M is defined by M2 = q2/a2, and the sound speed a is 
defined by a2 = yp/p. 

The left and right eigenvectors of A are obtained by direct computation. Since A 
has distinct eigenvalues, it follows that these eigenvectors may be chosen to be 
bi-orthogonal, i.e., Ii. r, = 6, where i, j = +, -, 0. Defining 

, 
0=Jq2-a’, 

cot ,u w [CT=7 
4-p aq P 

the right and left eigenvectors for A’ become: 

1; = (u, v, p - ’ ), 

I’+= -v,u, *w ) 
( pa > 

r; = ( u/q2, v/q’, 0)‘, 

(10) 

(11) 

r’ = ( 
Tau-cm fao+uo I 

f 2q2w ’ 2q2w 
v&E. 

> 
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Similarly for A”: 

If+ (rh’)‘= (0, 0, l), 

1’: =t(*c, LO), 

ry =(&[-I, 1,O)‘. 
(12) 

The characteristic curve given by dy/dx = ,I0 defines the streamlines of the flow- 
field. The curves dy/dx = 1+ are the Mach lines and they represent the path of an 
infinitesimal disturbance. The characteristic equations are defined by 1. dQ = 0 for 
l=l,,o and hold along the associated characteristic curves. For 1 = I,, this equation 
is simply dS= 0. Assuming isentropic flow, the Riemann invariants for steady 
supersonic flow may be obtained from the A f characteristic equations. Substituting 
(6a) or (6b), (11) or (12), (3), and (4) into the equation 1. dQ = 0 and using the 
first law of thermodynamics, dh = T dS+ p -’ dp, one obtains 

d8Tcot$=O 
9 

(13) 

or 

dv + d6 = 0 (14) 

along the curve dy/dx = A f . Here, we have introduced the Prandtl-Meyer function 

v(M)=tan-‘&Z-i- (s)i’2tan-1 [-$(Mi- I)]“‘. (15) 

Thus, v + 6 are the Riemann invariants. 
Thus, we see that the characteristics and Riemann invariants for steady isentropic 

supersonic flow are exactly analogous to the situation for unsteady gas dynamics 
given in [ 111. Globally, however, a characteristic curve must end whenever a sonic 
state is reached. 

2. ELEMENTARY WAVES AND THE RIEMANN PROBLEM 

The solution of the Riemann problem for (1) is self-similar in the variable J/X 
and consists of elementary waves. These waves may be shock waves, Prandtl- 
Meyer expansions, or slip-lines and they correspond in their essential features to the 
shock waves, rarefaction waves, and contact discontinuities, respectively, of 
unsteady gas dynamics. In particular, for both systems, the 1, characteristic fields 
are genuinely non-linear (see [ 121) and the 1, field is linearly degenerate. Thus, an 
elementary k wave is either a shock or a centered expansion, while an elementary 
O-wave must be a slip-line. We will follow [ 13, 141 in our discussion of wave struc- 
tures; this analysis is sufficient to construct an algorithm for solving the Riemann 
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problem. See [ 151 for a similar treatment and [ 111 for an analogous study of 
unsteady gas dynamics. 

We introduce notation for use in the remainder of the paper. The subscripts B 
and T may be read as bottom and top and correspond to the usage of left and 
right, respectively, in the standard texts on unsteady gas dynamics [ 11, 121. Plus 
waves face towards the top and minus waves face the bottom; the II-axis is oriented 
towards the top. The notation (QI, Q,) refers either to an elementary wave con- 
necting Q, on the bottom to Qz on the top or the Riemann problem with QL on 
the bottom and Qz on the top. 

The three elementary waves have the following characteristics: 

The wave (QB, QT) is a slip-line if pe=pr and 6,= 6,. Thus, the wave speed 
(i.e., dy/d?c) or inclination of the slip-line is A, = hB = 6,. The density may jump 
arbitrarily across a slip-line. 

(ii) Shock Wuoes 

Through any state QO, there are two one-parameter families of states, 3 + (Q,,), 
which can be connected to QO by a shock. Here, a shock means a discontinuity 
which satisfies the Rankine-Hugoniot conditions for ( 1). The 3 + (QO) and 3 _ ( QO) 
curves are associated with shocks facing forwards and backwards, respectively. The 
projection of these curves onto the p - 6 plane is illustrated in Fig. 1. The shock 

-30 -20 -10 0 10 m 30 

8 

FIG. 1. The shock curves 3 r (Qo), S ~ (Q,,) for M, = 2. Those portions of 3 L indicated by the dash- 
dotred line represent the expansion shock branch while the dashed portion represents inadmissible (i.e., 
M < I ) states which satisfy the RankinsHugoniot conditions. The solid lines are Sk (QO). 
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curves, S * (QJ, are defined to be the subsets of 3, (Qo) consisting of supersonic 
states which satisfy the Lax entropy conditions. Thus 

S + (Qo) = {Q: (Q, Qo) satisfies the Rankine-Hugoniot conditions, 
M(Q)>~,~+(Q)>~>~+(Qo)), 

S- (Qo) = {Q: (Q,,, Q) satisfies the Rankine-Hugoniot conditions, 

where c is the “shock speed,” i.e., P = dyddx, and yJx) is the shock path. We will 
refer to that portion of 3, (Qo) for which p <p. as the “expansion shock branch.” 
The Rankine-Hugoniot conditions may be expressed in terms of 5 =p/po and MO = 
qO/ao: 

&=&&tan-’ iLfK + lI[ mG-(Y-1)-(Y+1)5 “2 ) 
(Y+l)5+(Y-l) 1 I 

(16) 

P -(Y+W+(Y-1) 
PO-wl)r+(Y+l)’ 
M 

[ 
(65+ 1)-5(t2- 1) ‘I2 -= 

MO 5(5+6) 1 
p = &sin - ’ (y+ l)(+(]‘- 1) “2 1 2A4;y . 

I 

‘\ 
I 
\ 

5- 

P 
Pmax 

4 .- 

(17) 

(18) 

(19) 

‘\\ I’ 
\ I 
\ ‘\ 

2 
I' -- 

\ 
'\ ,/' 

'. 
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8 

FIG. 2. The Prandtl-Meyer curves f? + (Q,,) for MO = 2. The Prandtl-Meyer expansions and com- 
pressions are denoted by solid and dashed lines, respectively. P,,. is the isentropic compression pressure 
required for sonic flow. 
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Here, /3 is the angle that the shock makes with respect to the flow direction, 6,; the 
+ ( - ) sign is taken for + ( - ) shocks. It follows from the definitions that /3= 
tan-’ 0-6~. 

The Rankine-Hugoniot condition (16) implies that across a shock wave of either 
type, 

6,>6,. (20) 

This fact is used in Section 3 as a convenient mechanism to distinguish com- 
pressions and expansions, given a large pressure jump. 

(iii ) Expansion Watles 

Through any state QO, there are also two one-parameter families of states 
fi + (QO), which can be connected to Q,, by a centered Prandtl-Meyer wave. Here, a 
Prandtl-Meyer wave is a self-similar solution of (1) in the variable y/x. As before, 
an W, wave faces forwards and an 8- wave backwards. The projection of these 
curves onto the p - 6 plane is illustrated in Fig. 2. The solution to these equations 
can be integrated using the Prandtl-Meyer function, see (15): 

S(Q) - 4Qo) = TCv(W - 4M,)l, (21) 

S=&, (23) 

where 4 =p/p,,. The Prandtl-Meyer function is monotonically increasing in M and 

v(M) + v,,, = -i[(s)“‘- I] as M+ 0o; 

also, v(M) + 0 as M -+ 1 and v(M) is not defined for M < 1. Therefore, the Prandtl- 
Meyer curve can be defined only for admissible states, i.e., M> 1. We denote that 
portion of the curves w + (Qo) consisting of Prandtl-Meyer expansions (i.e., p < pO) 
as R f (Q,,). Therefore 

R + (Qo) = {Q: (Q, Q,,) satisfy the Prandtl-Meyer relations, p <pO}, 

R _ (Q,,) = {Q: (QO, Q) satisfy the Prandtl-Meyer relations, p cp,,), 

where the Prandtl-Meyer relations are (21)-(23). 
Each of the curves i? + (QO), 3, (QO) are everywhere C”. Furthermore, it is well 

known (see [13]) that 2 + and 5,) or R _ and 3; ~~ , have second-order contact at 
Q,,. We define the following composite wave curves: 

C,(Qo)=S,(Qo)uR.(Q,). 
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AX 

a 
* 
8 b 

FIG. 3. The solution of the Riemann problem (Qe. Qr) in the (x, ~1) and (p, 6) planes; Qes = 
(P,, S,, S,d and Qtr=k*, S,, S,,) where SeB, S,, are computed by solving the jump conditions 
across the + waves. 

This combination satisfies the criterion that the entropy either increases (for discon-, 
tinuous solutions) or remains constant (for smooth solutions) from the front to 
back side of any elementary wave. 

The Riemann problem for steady supersonic flow is the initial value problem for 
(1) with initial data: 

Q=Qn yao, 
=Qth y<o. (24) 

Its solution consists of a +, 0, - wave in that order from top to bottom. The f 
waves may be either shocks or expansions while the O-wave is always a slip-line. In 
order to construct these waves, one needs to determine the intersection, (p,, 6,), of 
the curves C + (Qr) and C _ (QB) in the p - 6 plane. The remaining flow properties 
on either side of the O-wave can be calculated using p* and either (17) or (22), as is 
appropriate. In Fig. 3, a solution is illustrated in both the x - 4’ and p - 6 planes. 

SHOCK 

WINSION 

FIG. 4. Physical interpretation of the Riemann problem for steady supersonic flow. The plate is in 
equilibrium when the pressure on either side is equal. 
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Since the C + (QT), C ~ (QB) curves allow only a limited variation in 6, it is easy 
to construct admissible data (Qe, Qr) such that C+(Q7) n C(Q,) is empty, i.e., 
(l), (24) has no solution. Nevertheless, we assume that any Riemann problem con- 
structed by our difference scheme has a unique solution. 

In supersonic flow, the Riemann problem has the physical interpretation 
illustrated in Fig. 4: given two states at the leading edge of the plate (QT. associated 
with the top surface and Qe associated with the bottom surface), determine the 
plate orientation which produces the same pressure, P.+, on its top and bottom sur- 
faces, and compute p*. 

An iterative procedure is required to solve for (p*, (5,). We accomplish this using 
the secant method. A Newton iteration is also possible; see [lo] for the case of 
unsteady gas dynamics. The iteration proceeds as follows: 

-1 
P*s’Ps3 P;:=Pn 

6,; =SB, 6,:=6,, 

&= Jwc3T- 1 vYPe.&,r~ 

~o,=~Bo,P,+Po,P,+~,-~.~/~Bo,+~o,~~ 

if jj”, >O, 
otherwise, 

and for v = 0, 1, 2,... to convergence: 

M” *B.T= 11 
1;2 

-Y b *T=~T+ tit<>, MkT; QT.), 
-v b *e=6e-$(ti, M;B; QeL 

&T= (6;B.T-8~~fT.)/(P;B.T-P~~tT), 

p;’ ’ = max 
[ 

(/?‘,-&)p’,+6’,.-6;. 

SF-lG 
,& 9 1 

where E 1~ 10 -6. The initial guess, a”, , consists of intersecting the tangent lines to 
C + (QT.), C _ (QB) at Qr, QB, respectively. The function JI is defined by 
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#(5, M; Qd = tan - ’ i[,Al:-:+ ll[ 
2yM;+-l)-(y+1)5 

(Y+l)<+(Y-k) 
if 521, 

=v(M,)-tan-‘(M2- 1)‘12 

+ (5)“’ tan-’ (2 (M2- 1))“2, otherwise. (25) 

The computational effort involved in this iteration can be reduced by solving for 
the intersection of ,!? + (QT) and ,!- (QB) instead of the above exact procedure. This 
amounts to replacing the expansion branch of C, with a rarefaction shock branch. 
As noted in [ 131, the resulting error in p* is 0(t3) and is very small in practice. To 
implement this scheme, eliminate the computation of M’,B,T and replace # by 

$(t; Qd = tan - ' 

(26) 

The evaluation of the solution for a particular choice of q = Y/X is straightforward 
unless q lies inside an expansion fan. In this case, the Mach number may be 
evaluated at q: 

M=[l+c”tan’{ 
f (n/2 + v(M,)) - tan-iv 

c }I”’ (27) 

where the f signs correspond to f waves, respectively, and c = J(y + l)/(y - 1). 
When using the solution of the Riemann problem in an approximate numerical 
scheme, it is worthwhile approximating (27) by a linear interpolation between the 
pre- and post-wave states. If the interpolated variables are chosen appropriately 
(e.g., (p, U, u)), this is an excellent approximation and the error introduced will be 
negligible compared to the overall truncation error of the scheme. It is important to 
respect the entropy condition and spread out expansion waves even when qS is used 
in place of @. 

3. DESCRIPTION OF THE METHOD 

Our scheme for solving the initial value problem for (1) follows directly from the 
schemes used by Colella [6] and Colella and Woodward [7] for unsteady gas 
dynamics. 

The computational domain is illustrated in Fig. 5. The marching direction is x 
and the mesh is oriented such that XT = constant E xn for all j. Here n and j refer to 
the step number and cell number, respectively. The marching step, dx” = x” + ’ - x”, 
is chosen to satisfy the usual CFL condition. The computational mesh divides the 
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n n+l 

t 

--__ ---_ ---_ --- 

j+1 

j-l 

Y 
I 

t 

__e-- 
___--- 

___--- 

X 

FIG. 5. The computational mesh 

j f 1.0 

j - l/2 

computational domain into control volumes or cells which in the y-direction are 
centered at ~7 and have a height of d$! =J;+ , ,: -.$‘- ,,.z. 

The difference equations for the jth zone are formally derived by integrating (1) 
over the shaded region in Fig. 5 and applying the divergence theorem. Let V, Sk’ 
denote this region and its boundary. Then, 

(28) 
= 

i 
(F, G).n A, 

<’ 1’ 

where n is the unit outward normal to SV. Expanding (28), we obtain 

Here for any quantity a: 

(29) 

(30) 
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and 

1 A-+’ a” + w = _ J I+ 112 & x” 4y;+ 1/z + sf+ 1/z. (x - ~9, x) dx, 

where 

ST+ I/Z = (Jiin:;,2 - y;+ ,,2)/Ax. 

(31) 

(32) 

This formula is exact provided that the interface flux averages, G -SF, are known. 
In practice, approximate interface fluxes must be defined to complete the 
specification of the scheme. 

In the event that the initial data at x=x” is piecewise-constant, the interface 
fluxes may be computed exactly by solving the Riemann problem (Qj, Q,+ 1) and 
evaluating the solution along JJ/X = sj + ,12. The resulting scheme is Godunov’s 
lst-order method, which is outlined in [ 163. The computed solution is exact for one 
marching step, at which point the averaging procedure, (30), destroys the detailed 
structure in the solution. The random choice method which is presented in [l5] for 
steady supersonic flow fully utilizes the information in the solution to the Riemann 
problem. However, its extension to three-dimensional flows is problematic. 

The scheme described in this paper is a generalization of Godunov’s method in 
the sense that the interface fluxes are determined by solving Riemann problems at 
the upper and lower cell boundaries. However, additional steps are added to the 
method and instead of solving the Riemann problem (Q,, Qj+ ,), an approximate 
method of characteristics is used to define the states forming the Riemann problem. 
For smooth flow, the resulting fluxes are Znd-order accurate with respect to the 
initial data. In the immediate vicinity of a shock, the scheme reduces to Godunov’s 
method and the additional diffusion which is thereby introduced dampens 
oscillations which would be created by the 2nd-order fluxes. Since the same scheme 
is used in smooth and non-smooth flow (the variation from Ist- to Znd-order is 
effected by a parameter), the resulting computer code efficiently vectorizes. 

The algorithm for computing the interface fluxes from the initial data may be 
divided into a number of steps. The first of these is the “decoding” of F to obtain Q, 
which is accomplished in a manner similar to that outlined in [3] and [4]. Given 
F, define 

x=y2+(y2- 1) 
i 

Z-2&.$ . 
2 2 I 

(33) 

Then, 

~+,h Fz 
*=:‘+1’E;’ 
o = FJF, , 
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P = Fdu, 

p=F?-uF 1. 

With Q known, the interface fluxes can be constructed by the following three steps. 

Step 1. Construction of a piecewise-linear representation of the initial data, 
{ Qj}. Thus, 

4(Y)=4,+6q,’ (Y-YjL Yj-1;2<Y<Y,+1;'2 (34) 

for q= 41% q2,q3, where Q = (qL, q2, q3Y. The slopes, 6q,, are functions of the 
adjacent mesh values: 

‘ql=A(qj-kr..., qj+k). (35) 

The numerical results presents here use a A with k = 2. Notice that for the overall 
scheme F?+‘=B(F;p, -,,..., F;+k+l ). The function A, which is specified below, is 
chosen’ td yield 4th-order spatial accuracy in smooth flow while maintaining 
monotonicity everywhere. This implies that the linear profiles, (34), do not 
introduce any new maxima or minima. A further modification is introduced near a 
strong shock which progressively decreases 6q to zero as the shock strength 
increases. 

Step 2. Values for Q are determined at each side of the midpoint of the upper 
and lower cell interfaces at locations denoted A, A’ and C, C’ in Fig. 5. This is 
accomplished by tracing approximate characteristics from these points back to 
x = xR. Only those characteristics tracing back to the same zone in which the point 
lies are used and in general QA # QA,. Using values of Q at the intersection of these 
characteristics with X=.X”, values of Q at A, A’, C, and C’ are determined. When 
all three characteristics in a zone are of the same sign and the flow is smooth, this 
method reduces to the method of characteristics. After this procedure has been 
applied over the entire mesh, two states, denoted QB = Q,+ ,,2,B and Qr= Q,+ iIZ,=, 
are associated with each interface. 

Step 3. The Riemann problem (Qj+ ,,2,B, Q,+ ,,2.T) is solved for each i and the 
solution is evaluated along y/x = sj + ,,*. This state is used to compute F,, 1,2, 
Gj+ 112. 

The M-order Godunov scheme, by contrast, consists of decoding the conserved 
quantities, and executing Step 3, using the Riemann problem (Q,, Qj+ i). The 
resulting fluxes allow the conservative variables to be advanced via (29). This 
method assumes property slopes are zero, eliminating the need for Steps 1 and 2. 

Implementation of Steps 1 and 2 is now explored in detail. Step 3, which is the 
solution to the Riemann problem, has been fully covered in Section 2. The linear 
property profiles are determined from: 



A HIGH-ORDER GODUNOV SCHEME 171 

6+9j=9j+l-9ji 6-qj=qj-qj-1; A9ji= t(9j+ I-9j- 1h 

q!im= 

J 
i 

2min(l~+qjl, ls-9jl)9 if (~+9j)'CS-9j)>09 

0; otherwise, 

q: = min(dqj, q;“), 

STj = min($ (qj+ 1 -~q~+~-9j-I-~9~-~l,q~")'sgn(A9j), 

(36) 

i$ = dyj. min 
2Gj 26+99j 26- 9j 

‘7’ 
- 

Yj+ 1 -Yj AY, > 

. sgn(dq,) .f;. 

Here, the notation qfr refers to the “Fromm slopes” discussed in [lo]. The 
parameter&, 0 <fi < 1, is the “slope flattening” coefficient, which is set to zero near 
a strong shock and is determined as follows: 

COj= Dpj 

min(Pj-t,Pj+,)’ 

Zj=max(8j+,-~j-1, C1-Oj), 

1, Oj= 
if cj:iOo, 

0, otherwise, 

Bj= 
DPj =Pj+I-Pj-1 

DPj-1 +DPj+l Pj+2-Pj--2’ 

~=a,*max(O, min(C>, C,.(C,-/Ii))), 

J1=max(X+,,~,~- L)9 

&=1-X. 

(37) 

Here, Ck, k = l,..., 4 are adjustable parameters. For the calculations in Sections 4 
and 5, we have taken C1 = 0.3, Cz = 1.0, CI, = - 10.0, and C, = 0.75. The parameter 
Zj checks the magnitude of the local pressure gradient and determines whether the 
jth zone is inside an expansion or a compression. The latter check is accomplished 
using the jump relation, (20). Observe that (Bj- 1, aj= 1) implies that thejth cell is 
inside a numerical shock layer and that the profiles within this element are flat- 
tened, i.e., fj-0. On the other hand, (/Ij-0.5, aj = 1) indicates that the jth cell is 
inside a continuous compression and that the slopes for this cell are not flattened. 

We now turn to the construction of the states Qj+ ,,2,B and Qj+ l,Z,T located at the 
midpoint of the (j, j+ 1) interface. Consider first the construction of Qj+ l,2,B: 

(i) Calculate the approximate characteristic directions 1 k,O by evaluating 
(8) at QT. 

581:58:2-2 
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(ii) Trace each approximate characteristic back from the interface midpoint 
and determine the y-coordinates, J k,O, of their intersection with x = .Y’. Define 
yint = yl+ Ayj/2. 

(iii) Evaluate Qi,” = Q( y f ,O)r using (34). Define Qgt = Qy + SQ, . Ayj/2. 
(iv) Calculate I: ,o, r: ,. by evaluating ( 11) or ( 12) using Q,‘. 
(v) Determine the cell edge state Q, + ,:z.B from: 

where Q$ is redefined as follows: 

Q%=Qi from (iii), if y, < J?int, 

= QB*, otherwise, 

and 

(38) 

(39) 

Qs*=QB+ from (iii), if 1’ + < yint, 

= Qgt, otherwise. 

Qj+ 112.T is calculated in an analogous manner. Here QTnt = Q;+ , - SQ, + , . ( Ayj + , )/2 
and Q”, is determined from (iii) if y, > Yint. 

In regions of smooth flow, Steps 2 and 3 for determining cell edge fluxes Q;:,‘,$ 
are an approximation to the method of characteristics. This can be shown by con- 
sidering the linearization of (l), i.e., A is a constant matrix and 1 f ,0, I * ,0, r k ,. are 
constant. Noting that (rP} constitutes a basis for Q and that 1,. rU = 6,” for /A(, v = 
+, 0, -, it follows that the projection of an arbitrary vector Q onto the subspace 
spanned by rr is simply (1,. Q) rr. Therefore, 

Q= c (I;Q)r,,. 
u = + .o. - 

(40) 

FIG. 6. Solution of the Riemann problem for the linearization of system (1). 



A HIGH-ORDER GODUNOV SCHEME 173 

The solution of the Riemann problem for this situation is shown in Fig. 6. Using the 
notation from this figure and defining LY@ = (Qr- Qe) * I,, its solution can be 
expressed as: 

QT=QB+ 1 Now suppose that 1+ , A0 2 sj+ rjz and A_ < si+ 1,2 as illustrated in Fig. 7a. From 
the scheme of (38) and (39) we get: 

Qj+ l/2,8 = (1. -Qet)r+ +(lo.QO,)ro+(l- .QBf)r-, 

Qjc 1/2.T= (1, *Q?)r+ +(lo*Q;)ro+(l- .Q;)r-. 
(42) 

The solution of the Riemann problem (Qj+ 1,2.B, Qj+ 1/2,T) evaluated at y/x = Sj+ r12 
is Qm, i.e., 

Q;:$; =(l;Q,+)r+ +(Io.Q~)ro+(IL-Qf)r-. (43) 

On th.e other hand, the method of characteristics consists of solving 1,. dQ = 0 
along dy/dx = L, for p = &, 0. Noting that 1. dQ = d(l . Q) for a linear system and 

n n+l 

1 

----v-w----_ 
------ 

a 

+1 

I 

n n 

,-_---- -_____-_--- -me- 

1 

j+l 

i 

FIG. 7. Tracing characteristics from Qe = Qj+ ,12,a; (a) subsonic crossflow, (b) supersonic crossflow. 
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approximating dQ IV Q;;$? - QP where Q” = Q( I’~, x” ) and y, may lie in either cell 
j or j+ 1 leads directly to (43). 

In the case i + , &, A _ 2 sj+ , ,* shown in Fig. 7b, (38) and (39) yield: 

Qj+L;z,B=(I+.Qsf)r+ +(I,.QO,)r,+(I~.Q,)r~, 

Qj+ 1i2.7~ QFt. 
(44) 

The solution of the Riemann problem for (Q,, ,Iz,B, Q,+ ,iz,T) evaluated at 
Y/X =sj+ 112 is Qj+ 112,~ which is identical to the method of characteristic solution. 

Analysis of the remaining two cases, I + > sj+ ,!z, ill , J.,, < sj+ I!* and L _ , IzO, 
li- Gsj+112 follow directly from the above arguments. 

4. BOUNDARY CONDITIONS 

The calculations presented in this paper represent duct flows and the only boun- 
dary condition which arises is that associated with an impermeable wall. At the 
wall, the velocity vector must be tangent to the wall. The computational mesh 
employed near a wall is illustrated in Fig. 8. The cell edge nearest to the wall lies 
along the wall while the mesh point closest to the wall is located half a cell width 
from the wall. If b” = ~1,~ denotes the bottom wall location at x = x”, then the wall 
slope is defined by the finite difference expression 

b:=(b”+‘-b”)/(x”+L-xn). (45) 

A similar expression defines the top wall. 
Near a well, F is advanced using (29) and the interface fluxes are calculated using 

basically the same three-step procedure applied to interior zones. However, a few 

n+2 
n n+l 

/ -. 
H-c- 

___----- HR 
Y - 5/z - - 

--Y, 

/H- 

--H /M 
/. 

--Y, 
Y ___-4- 
312 -- - 

p =y,,,/------ 

FIG. 8. The computational mesh at the bottom boundary. The dashed line indicates the effective 
mesh. 
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modifications are required. The following expressions are used to calculate 6qi at 
the bottom wall: 

as& = -1.5q, + 2q, - osq,, 

dq, =min(lSi,l, qP) sgn(6il)fl. 

The shock detection parameter, f;, is also redefined: 

fi = 1.0 - max(Jj, CJ~), 

f,=l-a2. 

(46) 

(47) 

Analogous expressions are used near the top wall. Steps 2 and 3 of the interior 
scheme remain the same except at the wall. Here, the state a:,;,$’ is computed as 
before and then the state Q;,: ‘I2 at the wall is specified by turning Q?,:y’ tangent 
to the wall by either u + shock wave or Prandtl-Meyer expansion depending on 
which direction the flow is required to turn. In the event that dq, = 0, it is easy to 
see that this procedure is equivalent to reflecting Q1 across the wall forming Q,,, 
solving the Riemann problem (Qo, Q1), and evaluating its solution at y/x = b:. By 
reflection, we mean that 

PO=PlY Po=Pl, 40=91, C&)=28-6,, 

where 0 = tan - ‘(b:). 
As will be demonstrated, this boundary treatment yields satisfactory results 

except in the presence of wall slope discontinuities. Such discontinuities turn the 
flow at the wall through either a compression or an expansion. A compression turn 
generates a shock wave which propagates into the flowfield while an expansion turn 
produces a Prandtl-Meyer expansion. The actual location of such a discontinuity 
generally falls in the middle of a marching step, as illustrated in Fig. 8. Since the 
wall slope is described by (45), the discontinuity is simulated by two successive dis- 
continuous turns; this alters the geometry of the problem being considered and, 
therefore, its analytic solution. 

To circumvent this problem and to more accurately resolve the flow in the 
neighborhood of slope discontinuities requires a special treatment of the numerical 
boundary conditions. Separate procedures have been developed for compression 
and expansion turns. 

Compression Discontinuities 

Numerical results for the interaction of a uniform free stream with a sharp com- 
pressive 30” turn are presented in Fig. 9. Using the boundary procedure outlined 
above, the pressure at the wall is nearly correct but there is a very large error in 
wall density and, consequently, in the location of the numerical shock layer. This 
error is due in large part to the application of two successive turns rather than the 
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FIG. 9. The inset is the computed pressure contours for a Mach 10, 30’ compressive turn using the 
high-order scheme with the special boundary treatment. The results are for section A -A. 0, basic 
scheme; A, hit the turn exactly; q , special procedure; solid line, exact solution. 
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one intended, thereby producing an incorrect value for entropy downstream of the 
turn. Since the wall is a streamline, this error persists forever. In Ref. [17] the 
analogous phenomena occurred at solid walls in unsteady gas dynamics. In both 
cases, the error arises from attempting to specify boundary treatments at boun- 
daries which are also linearly degenerate (i.e., A,) characteristics. This issue is dis- 
cussed in Ref. [ 183. 

A simple remedy for this problem is to adjust the step size to ensure that a turn 
coincides with the end of a step and this greatly reduces the density error as is 
illustrated in Fig. 9. However, examples have been computed where the residual 
error is still as large as 510%. 

The following heuristic procedure, applied following the slope discontinuity and 
in conjunction with the step size adjustment, has been found to lead to accurate 
results: 

(1) At the completion of each step, check for the occurrence of a wall slope 
discontinuity. If one occurs, record the state of the wall cell, Q,, which is represen- 
tative of conditions immediately upstream of the turn. Let Qr be the state obtained 
by turning Q, until it is tangent to the local wall slope downstream of the turn. 

(2) Downstream of the wall slope discontinuity, the wall fluxes are computed 
using the state Q, 

(3) At the completion of each step, the location of the outer edge of the wall 
cell is compared to the position of the shock wave which originates at the wall slope 
discontinuity with inclination /I relative to the streamline of the state Q,. If the cell 
edge is located between the shock and the wall, the state Qr is assigned to this cell 
and the special procedure is terminated. 

The number of steps for which the special procedure is in effect depends on Mach 
number and the magnitude of the turn, but it is typically on the order of 2-6 steps. 

Expansion Turns 

In this case, simulating a discontinuity in two successive steps has little effect on 
the downstream entropy since expansions are isentropic. Nevertheless, the accurate 
computation of the downstream flowfield requires a step size adjustment at wall 
slope discontinuities as above. Results are further improved by applying the follow- 
ing special procedures: 

(1) At the end of each step, check for a wall slope discontinuity and if one 
occurs, store the wall state, Q,, upstream of the turn. 

(2) At the completion of each step downstream of the turn, compute the 
angle, 13, of the line intersecting the discontinuity point and the center of the wall 
cell, with respect to the streamline direction of state Q,. Construct the Prandtl- 
Meyer expansion formed by turning state Q, to the local wall slope. Compute the 
conditions along the characteristic of orientation 0 with respect to the undisturbed 
flow streamlines and assign this state to the first cell. 
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FIG. 10. The inset is the computed density contours for a Mach 10, 10” expansion turn using the 
high-order scheme with the special boundary treatment. The results are for section A -A. 0, lst-order 
scheme, turn hit exactly; a, 2nd-order scheme, turn hit exactly; 0, Znd-order scheme, special procedure; 
solid line, exact solution. 
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(3) Terminate the special procedure when the characteristic direction, 8, falls 
in the constant property region behind the Prandtl-Meyer expansion. 

Figure 10 presents results for a Prandtl-Meyer expansion using an adjusted step 
size in conjunction with the lst-order Godunov scheme, the 2nd-order scheme, and 
the 2nd-order scheme combined with the above special procedure. Best agreement 
with the analytic solution is obtained with the latter scheme although a 6 % error in 
Mach number remains near the wall. This represents a substantial improvement 
over the other two calculations. Worst results are obtained with the lst-order 
scheme where truncation error exacerbates the situation at the boundary. 

5. RESULTS 

A number of examples are computed to illustrate the ability of the high-order 
Godunov method to accurately resolve smooth flows as well as those containing 
discontinuities. Calculations have been carried out using 20 points in the first two 
examples and 50 in the final three cases. Improved solutions could have been 
obtained using more computational points; however, such meshes are not practical 
for multidimensional problems and hence are not considered. All of the examples 
were computed using a step size which was 90% of the allowable step size based on 
the CFL condition. Calculations have been carried out using both Q’ and Q” as 
dependent variables. Results from these two approaches are nearly identical and the 
exhibited solutions in this section were computed using Q’. 

Computed and exact solutions for source flow are considered in Figs. 11 and 12 
using the illustrated geometry. In this example fluid emanates from a point source 
and expands in a radially symmetric pattern. The flow is isentropic and has a con- 
stant stagnation enthalpy. Using these constraints in conjunction with the perfect 
gas equation of state and mass conservation produces the following relation for p: 

&evNr- 111 P 
fi2 Y+ ly2 + 2 - &p2r2 = 0. 

Here r is the radial distance from the source and 27& is the mass flux from the 
source. This equation must be solved iteratively except in the case y = 3. Calculated 
results for the Godunov and high-order Godunov schemes are shown in Figs. 11 
and 12, respectively. Initial conditions are prescribed at x = 1 and feature a Mach 
number slightly greater than two while the illustrated results are at x = 20. The 
computed results for the high-order Godunov method are significantly more 
accurate than those obtained with the Godunov approach. 

The second example considered is flow through an “S”-shaped duct. The duct 
was specifically designed to expand uniform initial flow to uniform conditions in the 
middle of the “s” turn and then to compress the flow back to its original state. The 
geometry of the lower duct wall through the expansion section is specified while the 
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FIG. 13. Pressure contour plot of the entrance and exit sections of a symmetric S-shaped duct. 

upper wall profile is determined using a characteristic analysis. Entering the expan- 
sion turn, characteristics generated at the lower wall are traced to their intersection 
point with the upper wall and the upper wall slope is then adjusted so that it is 
parallel with the flow direction defined along the characteristic. The roles of the 
upper and lower walls are reversed in the compression section of the duct. The 
resulting flow field features characteristics which are straight lines. A contour plot 
of pressure computed by the high-order scheme is shown in Fig. 13, and constant 

0.3 CALCULATE0 EXACT 

PRESSURE 0 - 
DENSITY v _. _ ___ _ _ 

MACH NO. D ----- 

0.0 I I I I 

0.00 

BOTIOM 
WNl 

0.25 0.50 
DISTANCE 

0.75 1.00 

TOP 
WALL 

FIG. 14. Computed and exact property proliles at section B-B of the S-shaped duct. 
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FIG. 15. The exact solution, k-order scheme results, and Znd-order scheme results for the Riemann 
problem defined in the inset. 0. lst-order results; 0. Znd-order results; solid line, exact solution. 

pressure contours are approximately straight lines in both the expansion and com- 
pression turns. Property values along section B- B of Fig. 13 are illustrated in 
Fig. 14 and are in excellent agreement with the analytic solution. 

Two Riemann problems are considered in Figs. 15 and 16. The first is formed by 
the confluence of two parallel streams with different states. The jump in pressure, 
density, and Mach number across these two streams is 4, 2, and 3, respectively. The 
resulting interaction produces a shock which propagates into the low-pressure fluid 
and an expansion which propagates into the high-pressure region. The resulting 
density jump across the contact discontinuity is +. Throughout the interaction 
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between these two streams, the crossflow is subsonic (i.e., u/u < 1). Results for both 
the Godunov and high-order Godunov schemes at section A-A are shown in 
Fig. 15 along with the exact solution which was generated using the analysis of Sec- 
tion 2. The high-order Godunov scheme provides a sharper description of the shock 
and the contact discontinuity as well as a more accurate representation of the 
expansion. The shock and contact discontinuities appear to be captured in two 
points. 

A Riemann problem formed by two intersecting streams is shown in Fig. 16. 
Here, the angle of intersection between the two streams is 23” while the pressure, 
density, and Mach number jumps across the two streams are 100, 20, and 2.86, 
respectively. The resulting interaction again features a shock propagating into the 
low-pressure stream and an expansion traveling into the high-pressure region. 
Below the shock the crossflow is supersonic and the high-order Godunov method 
method for determining cell edge fluxes reduces to a method of characteristics. 
Calculated results, which are shown in Fig. 16, are in reasonable agreement with 
the analytic solution for the Riemann problem. However, the contact discontinuity 
appears to be smeared over more points than in the previous example and an 
undershoot in pressure and density occurs at the foot of the expansion. The expan- 
sion undershoot is principally caused by starting error and can be eliminated by 
using initial data which cover the expansion with 5 to 10 points. It can also be 
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FIG. 16. The exact solution and numerical results with the Znd-order scheme for the Riemann 
problem defined in the inset. 0, Computed density; Cl, computed pressure: f~, computed Mach num- 
ber; solid lines, exact solutions for these quantities. 
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FIG. 17. The exact solutions and numerical results with the Znd-order scheme for the shock interac- 
tion problem delined in (a). 0, Results at section B-B; 0, results at section A -A. Solid lines are the 
exact solutions. 

reduced by increasing the number of points used in the calculation or by starting 
the problem using an extremely small step size. 

A shock interaction example is illustrated in Fig. 17 which is generated by a duct 
containing both an upper and lower wall slope discontinuity. These produce two 
shocks which move towards the center of the duct and interact to form two reflec- 
ted shocks and a contact discontinuity. The exact solution to this problem can be 
constructed using the results for shock waves presented in Section 2 to predict the 
locations and strengths of the shock induced by the upper and lower wall slope dis- 
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continuities. The resulting interaction of these two shocks is determined using the 
solution to the equivalent Riemann problem. Figure 17 illustrates computed 
property values at sections A - A and B - B. The first of these is upstream of the 
shock interaction and shows the two shocks generated by the upper and lower 
slope discontinuities. The second section is downstream of the shock interaction 
and illustrates the reflected shocks as well as the contact discontinuity. The com- 
puted shocks are appropriately located in both sections and are captured in two 
points while the contact discontinuities are captured in four to five points. 

To place the high-order Godunov results in perspective, comparison computa- 
tions have been carried out using MacCormack’s method, see [ 191, in conjunction 
with a Schuman filter, see [20]. The &human filter, applied with a density switch, 
adds smoothing which is necessary to capture strong shocks. The MacCormack 
algorithm and Schuman filter are described for a uniform mesh by: 

where 

predictor: Fj = Fy - (G; - G;- , ) Ax/Ay, 

corrector: F; = f( Fy + Fj) - j( Gj + , - r;i) Ax/Ay, 

filter: F?+‘=FT+ Dj+,,,(F,‘+,-F,f)-Dj-1,2(Fjc-FjC-,), 
J 

Dj+ 112 = C(Pj+ 1 -Pj)l(Pj+ 1 + Pj)l b 

and d is an adjustable constant. This scheme is currently one of the most widely 
applied algorithms for computing inviscid aerodynamic flowfields. It has been 
implemented using the same control volume formulation applied in the high-order 
Godunov calculations. Wall fluxes in both the predictor and corrector steps are 
computed by turning the flow at the cell adjacent to the wall through the 
appropriate shock or expansion. 

The performance of MacCormack’s method is very problem dependent. In the 
case of a simple compression ramp, shocks with pressure jumps of 7 to 1 and 22 to 
1 were captured in 2 to 3 points without the use of smoothing. However, in more 
complicated problems, significant smoothing was necessary to damp oscillations in 
the vicinity of shocks. Figure 18 illustrates the computed pressure for the shock 
interaction example described in Fig. 17, using moderate levels of smoothing 
(d=O.5). The pressure oscillations visible near the shock can be damped using 
higher levels of smoothing, but at the expense of additional shock smearing. 

An extensive comparison of the performance of several schemes for unsteady gas 
dynamics, including MacCormack’s scheme and high-order Godunov schemes, 
applied to shock interaction problems in one and two space dimensions has been 
reported in Ref. [21]. Although the high-order Godunov schemes cost about six 
times as much computer time per mesh point as the MacCormack scheme in the 
reported calculations (and this is also the case for the schemes applied to the 
equations of steady supersonic flow), it is nevertheless the case that the high-order 
Godunov scheme proved to be more efficient in terms of required computer time to 



186 GLAZ ANDWARDLAW 

r 

0.00 
J 

025 0.50 0.75 1.88 
DISTANCE fy’lh. y”/h) 

FIG. 18. The exact solutions and numerical results with the MacCormack scheme for the shock 
interaction problem defined in [ 171. 0, Results at section B - B; 0, results at section A - A. Solid lines 
are the exact solution. 

obtain a given accuracy. We have not endeavored here to carry out as thorough a 
comparison here as that presented in [21], but a comparison of Figs. 17 and 18 
indicates that the situation is similar. We also note that, unlike the MacCormack 
scheme, the high-order Godunov scheme does not contain a problem-dependent 
smoothing parameter which must be adjusted on a trial and error basis for each 
new problem. 
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